Thietane-fused β-Lactams via Photochemical Cycloaddition Reaction of \mathbf{N} (α, β-Unsaturated Carbonyl)thioamides

Masami Sakamoto, ${ }^{a, *}$ Tohru Yanase, ${ }^{a}$ Tsutomu Fujita, ${ }^{a}$ Shoji Watanabe, ${ }^{a}$ Hiromu Aoyama ${ }^{b}$ and Yoshimori Omote ${ }^{\text {b }}$
${ }^{a}$ Department of Applied Chemistry, Faculty of Engineering, Chiba University, Yayoi-cho, Chiba, 260 Japan
${ }^{\text {b }}$ Department of Chemistry, Tsukuba University, Tsukuba-shi, 305 Japan

Photolysis of N - (α, β-unsaturated carbonyl)thioamides gave thietane-fused β-lactams in good yields, whereas some of the thioimides formed thiones via β-hydrogen abstraction of the thiocarbonyl group. Substituents at the α-position to the carbonyl carbon lead to a preference for [2+2]cyclisation over β-hydrogen abstraction. From a sensitisation experiment this reaction was shown to proceed via an $n \pi^{*}$ triplet excited state.

Recently the photochemistry of nitrogen-containing thiocarbonyl compounds has attracted much attention, since it provides an important route to various heterocycles. The Paterno-Büchi reaction of thioamides ${ }^{1}$ and cyclic thioimides ${ }^{2}$ are examples of this. In this connection, new methods for constructing the four-membered lactam ring continue to be of interest as a route to the analogues of naturally occurring antibiotics: a number of preparative methods for the β-lactams including photochemical routes have been reported. ${ }^{3}$ In relation to our previous studies of the photochemistry of acyclic and semicyclic thioimide systems, ${ }^{4}$ we now report a synthesis of thietane-fused β-lactams via photochemical reaction of $(\alpha, \beta$ unsaturated carbonyl)thioamides ${ }^{5}$.

Results and Discussion

N-(α, β-Unsaturated carbonyl)thiobenzamides 1 were prepared easily and almost quantitatively by the reaction of the corresponding thioamides with α, β-unsaturated carboxylic acid chlorides in the presence of base. The UV spectrum of N-benzylN -methacryloylthiobenzamide 1d exhibited maxima at 298 nm ($\varepsilon 9100$), $322 \mathrm{~nm}(\varepsilon 9900)$ and $462 \mathrm{~nm}(\varepsilon 190)$ derived from the $n \pi^{*}$ band of the thiocarbonyl moiety. When monothioimides $1 \mathbf{1 a - e}$ were irradiated with a $1000-\mathrm{W}$ high-pressure mercury lamp under argon, the corresponding 4-methyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-ones 2a-e were obtained in high yields (see Table 1). The structures of the thietane-fused β lactams were determined on the basis of elemental analyses and spectral data. The fact that the photoproducts were structural isomers of the starting material 1 was supported by a molecular weight determination and the mass spectra. The ${ }^{1} \mathrm{H}$ NMR spectra showed a new ABq peak arising from $5-\mathrm{CH}_{2}$ and the absence of an olefinic proton. The ${ }^{13} \mathrm{C}$ NMR spectra exhibited two new singlets (1-C and 4-C) and a new triplet (5-C); the absence of the thiocarbonyl carbon was also suggested.

Photolysis of (E)-2-methylbut-2-enylamide derivatives $\mathbf{1 f} \mathbf{f} \mathbf{h}$ gave similar results and the β-lactams $2 \mathbf{f}-\mathrm{h}$ were obtained. For the thioimide $1 \mathrm{~g}\left(\mathrm{R}^{3}=\operatorname{Pr}^{\mathrm{i}}\right.$), (2-methylbut-2-enoylamino)thioisobutyrophenone $\mathbf{3 g}$ was obtained as the main photoproduct accompanied by the β-lactam $\mathbf{2 g}$.

In the photoreaction of the thioimides $\mathbf{1 i}-\mathbf{o}$ under the same conditions, tricyclic β-lactams were obtained. The ${ }^{1} \mathrm{H}$ NMR and
${ }^{13} \mathrm{C}$ NMR spectra indicate that these tricyclic β-lactams were obtained as single stereoisomers.

In the photoreaction of the thioimides $\mathbf{1 p - v}$ which had no substituents at the α-position to the carbonyl groups, the yields of the β-lactams were lower except that of $1 \mathbf{t}$. The thione 3 s formed in the photolysis of thioamides $1 \mathbf{s}$, was isolated as trans

Table 1 Photolysis of monothioimides 1

1	R^{1}	R^{2}	R^{3}	Yield of $2(\%)^{a}$
a	H	Me	Me	$55^{\text {c }}$
b	H	Me	Et	$96^{\text {c }}$
c	H	Me	$\mathrm{Pr}^{\text {i }}$	73
d	H	Me	$\mathrm{CH}_{2} \mathrm{Ph}$	95
e	H	Me	Ph	77
f	Me	Me	Me	62^{d}
g	Me	Me	$\mathrm{Pr}^{\text {i }}$	$80^{d}(17)^{b}$
h	Me	Me	Ph	$80^{\text {d }}$
,	-(C		$\mathrm{Pr}^{\text {i }}$	96
j	-(C)		$\mathrm{CH}_{2} \mathrm{Ph}$	83
k	-(C)		Ph	96
I	-(C)		Me	67
m	-(C		$\mathrm{Pr}^{\text {i }}$	99
n	-(C)		$\mathrm{CH}_{2} \mathrm{Ph}$	87
0	-(C		Ph	91
p				$9(38){ }^{\text {b }}$
q	H	H	$\mathrm{CH}_{2} \mathrm{Ph}$	$13^{\text {c }}$
r	H	H	Ph	47
s	Me	H	$\mathrm{Pr}^{\text {i }}$	$13^{d}(75)^{b}$
t	Me	H	Ph	73^{d}
u	Ph	H	$\mathrm{Pr}^{\text {i }}$	$0(71)^{\text {b }}$
v	Ph	H	Ph	$0^{\text {e }}$

${ }^{a}$ Isolated yield. ${ }^{b}$ Yield of the thioketones 3. ${ }^{c}$ Yield determined on the basis of the amount of thioamides. ${ }^{d}$ Mixture of stereoisomers. ${ }^{e}$ Recovered.
and cis isomers in 52 and 23% yield, respectively. Photolysis of the imide 1t gave only the trans-thione $\mathbf{3 t}$ in 71% yield. The imide $\mathbf{1 g}$, gave only a low yield of the β-lactam $2 \mathbf{q}, \beta$-hydrogen abstraction leading to a thione which was too unstable to be isolated; it is known that thiones having an α-hydrogen atom are usually unstable. The β-lactams $\mathbf{2 f}-\mathbf{i}$ and $2 s$ were isolated as mixtures of stereoisomers but their separation by column chromatography or distillation was unsuccessful.

The mechanism for the formation of β-lactams is explicable in terms of the intermediacy diradical 4 as shown in Scheme 1.

Scheme 1

Thiones are formed by ring-opening reaction of the aziridine 6 which is produced by cyclisation of 1,3 -diradical intermediate 5 . We have already reported the abstraction of the β-hydrogen to the thiocarbonyl group of acyclic monothioimide. This mechanism is supported by a trapping experiment. Thus, low temperature photolysis followed by addition of acetyl chloride and triethylamine gave acetylthioaziridine. ${ }^{4 b}$

The conformation of ketones has been shown to be important in their photoreactions and conformational factors are expected to be even more important in the photochemistry of thioimides. Four possible conformations of acyclic monothioimides are shown in Fig. 1. Steric demands of substituents and dipole-

1 A

1B

1C

1D

Fig. 1
dipole interactions define the conformer distribution and it is concluded that β-lactams are formed from conformer \mathbf{A} and conformers \mathbf{B} and \mathbf{C} give thiones. It seems that this distribution is one of the important factors which determine the product ratio.
Substituents (R^{2}) at the α-position to the carbonyl carbon also influence the product ratio. Such a substituent makes a [2+2]cyclisation reaction more favourable since the intermediate 1,4 -diradicals $\mathbf{4}$ are stabilised by it. For the photoreaction of the imide 1s, two stereoisomeric thiones were isolated. Irradiation of the thiones 3 s -trans and $\mathbf{3 s}$-cis irradiated independently under identical conditions, showed that they were inert toward photolysis; furthermore, cis-trans isomerisation was absent. It is concluded that cis-trans isomerisation of the thioimide 1 leads to the formation of stereomixtures of thiones $\mathbf{3 g}$ and $\mathbf{3 s}$ and β-lactams $\mathbf{2 f}-\mathbf{h}, \mathbf{2 s}$ and 2 t . However, indirect isomerisation involving a back reaction from the $1,4-$ diradical intermediate 4 cannot be excluded. Three types of reactions, cis-trans isomerisation, intramolecular [2 + 2]cyclisation and β-hydrogen abstraction, occurs competitively in this photoreaction.
The quantum yield of the imide $\mathbf{1 d}$ for the formation of β lactams 2 d was 0.18 . The photoreaction also proceeded when the imide $1 \mathbf{d}$ was selectively irradiated in the $n \pi^{*}$ region of the thiocarbonyl group (436 nm). The photocyclisation was sensitised by Michler's ketone ($\left.E_{\mathrm{T}}=62 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)^{6}$ and thioxanthone $\left(E_{\mathrm{T}}=65.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{6}$. Although this reaction was not quenched by ferrocene $\left(E_{\mathrm{T}}=35 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{1 \mathrm{c}}$ and trans-stilbene $\left(E_{\mathbf{T}}=50 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{6}$, the sensitisation experiment suggests that the cyclisation proceeds from the $n \pi^{*}$ triplet excited state of the thiocarbonyl group.
In conclusion, photochemical reactions of $N-(\alpha, \beta$-unsaturated carbonyl)thioamides 1 gave thietane-fused β-lactams 2 in good yields. The substituent at the α-position to the carbonyl group was preferred in this photoreaction since the diradical intermediate 4 is stablilised by the substituent. When the thioimides possessing no substituents at the α-position to the carbonyl group were irradiated, β-hydrogen abstraction by the thiocarbonyl function proceeded to give thiones as the major product. Intramolecular [2 +2]photocyclisation to produce β -

5
6

3
Scheme 2
lactams proceeds from a $n \pi^{*}$ triplet excited state as shown by the sensitisation experiment. This is interesting in that intermolecular photocycloaddition of O-vinylthioanilide proceeds with a singlet excited state. ${ }^{1 \mathrm{c}}$ Furthermore, the β-lactams obtained by the photoreaction of $N-(\alpha, \beta$-unsaturated)thioamides have the interesting structural feature of a sulphur atom adjacent to the β-lactam ring. Since thietanes are known as reactive and useful intermediates in synthesis, it was expected the thietane-fused β-lactams would be versatile intermediates in a variety of reactions. Since the starting materials are easily obtained by acylation of thioamides, this reaction provides a useful synthesis of β-lactams. ${ }^{7}$

Experimental

M.p.s were measured on a Yanagimoto micro melting point apparatus, and were uncorrected. IR spectra were measured on a Jasco IRA-1 spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Hitachi R-600, JEOL-100 and Jasco GSX500 spectrometers using tetramethylsilane as an internal standard. The chemical shifts are recorded as δ values with coupling constants in $\mathrm{Hz} ; \mathrm{CDCl}_{3}$ was used as a solvent unless otherwise stated. UV spectra were measured on a Shimadzu UV-365 UV-VIS-NIR recording spectrophotometer. Eikohsya 1000-W and $500-\mathrm{W}$ high-pressure mercury lamps were used as irradiation source. A Corona Model-117 molecular weight apparatus was used for molecular weight determination. Silica gel (Merk, Kieselgel 60, 230-400 mesh) was used for flash column chromatography.

Preparation of Monothioimides.-All monothioimides were prepared by the reaction of N-substituted thioamides with acid chlorides. The preparation of N-methacryloylthiobenzanilide $\mathbf{1 e}$ is given as a sample. Triethylamine ($300 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added dropwise to a solution of thiobenzanilide $(600 \mathrm{mg}, 2.8$ mmol) and methacryloyl chloride ($300 \mathrm{mg}, 3.0 \mathrm{mmol}$) in dry benzene (30 ml) at room temperature under nitrogen and the reaction mixture was then stirred for 2 h . The precipitated triethylamine hydrochloride was removed by filtration through Celite, the benzene was evaporated off, and the residual mixture was subjected to chromatography on silica gel (eluent: benzenehexane). N-Methacryloylthiobenzanilide ($750 \mathrm{mg}, 95 \%$) was isolated as a red liquid. This monothioimide 1e was unstable and used as soon as possible without further purifications. Most of monothioimides $\mathbf{1 c}, \mathbf{1 e}-\mathbf{p}$ and $1 \mathbf{r}-\mathbf{v}$ were synthesised in the same manner. The monothioimides $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 d}$ and $\mathbf{1 q}$ were however unstable and they could not be isolated even by flash
chromatography. Thus the reaction mixture was evaporated, hexane was added, and the precipitate was filtered off. The crude product was used for the photochemical step and the yields of β-lactams were determined on the basis of the amount of corresponding amides. Some monothioimides $1 \mathrm{~g}, \mathbf{1 h}, 1 \mathrm{t}$ and $\mathbf{1 v}$ were obtained as stable crystaline solids.

N -Methacryloyl- N -methylthiobenzamide 1a. $\quad v_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} \quad 1625$ and $1685 ; \delta\left(\mathrm{CDCl}_{3}\right) \quad 1.48 \quad(\mathrm{~d}, \quad J \quad 1,1 \mathrm{H}$, $\mathrm{C}=\mathrm{CMe}), 3.65(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 5.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.28(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and 6.9-7.4 (m, 5 H, ArH).

N -Methacryloyl- N -ethylthiobenzamide 1b. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1625 and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.32(\mathrm{~d}, J 7,3 \mathrm{H}, \mathrm{Et}), 1.45(\mathrm{~d}, J 1,3 \mathrm{H}$, $\mathrm{C}=\mathrm{CMe}), 4.30(\mathrm{q}, J 7,2 \mathrm{H}, \mathrm{Et}), 5.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and $7.0-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.

N -Isopropyl- N -methacryloylthiobenzamide 1c. $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1625$ and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.41(\mathrm{~d}, J 1,3 \mathrm{H}$, $\mathrm{C}=\mathrm{CMe}), 1.47\left(\mathrm{~d}, J 7,6 \mathrm{H}, \mathrm{CMe}_{2}\right), 5.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.45$ (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}), 5.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $7.2-7.5(\mathrm{~m}, 5 \mathrm{H}$, ArH).
N -Benzyl- N -methacryloylthiobenzamide 1d. $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 1625$ and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.38(\mathrm{~d}, J 1,3 \mathrm{H}$, $\mathrm{C}=\mathrm{CMe}), 5.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.40\left(\mathrm{~s}, 2 \mathrm{H}, N-\mathrm{CH}_{2}\right), 5.48(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$) and $7.1-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -Methacryloylthiobenzanilide $1 \mathrm{e} . \mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1625$ and 1685; $\delta\left(\mathrm{CDCl}_{3}\right) 1.79(\mathrm{~d}, J 1,3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 5.38(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $6.9-7.6(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -Methyl- $\mathrm{N}-[(E)$-2-methylbut-2-enoyl $]$ thiobenzamide $\mathbf{1 f}$. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635$ and $1675 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3-1.45(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}=\mathrm{CMe}), 1.50(\mathrm{dq} J 7$ and $1,3 \mathrm{H}, \mathrm{C}=\mathrm{CHMe}), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me})$, $6.03(\mathrm{qq}, J 7$ and $1,1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.

N -Isopropyl- N -[(E)-2-methylbut-2-enoyl]thiobenzamide $\mathbf{1 g}$. M.p. $64.5-66^{\circ} \mathrm{C} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635$ and $1675 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.2-1.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 1.48\left(\mathrm{~d}, J 7,6 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.55(\mathrm{dq}, J 7$ and $1,3 \mathrm{H}, \mathrm{C}=\mathrm{CHMe}$), $5.68(\mathrm{sep}, J 7,1 \mathrm{H}, N-\mathrm{CH}), 6.23(\mathrm{qq}, J 7$ and $1,1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$) and $7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$) (Found: $\mathrm{C}, 68.95$; $\mathrm{H}, 7.35 ; \mathrm{N}, 5.3 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 68.92 ; \mathrm{H}, 7.32 ; \mathrm{N}, 5.35 \%$).
$\mathrm{N}-[(\mathrm{E})$-2-Methylbut-2-enoyl]thiobenzanilide 1h. M.p. 96$98^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635$ and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.6-1.7(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}$), 1.68 (br d, $J 7,3 \mathrm{H}, \mathrm{C}=\mathrm{CHMe}$), 6.68 (br q, $J 7,1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}$) and $7.1-7.8(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$ (Found: $\mathrm{C}, 73.25 ; \mathrm{H}, 5.8 ; \mathrm{N}$, 4.7. $\mathrm{C}_{18} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 73.18 ; \mathrm{H}, 5.80 ; \mathrm{N}, 4.74 \%$).

N -(Cyclopent-1-enoyl)- N -isopropylthiobenzamide
$1 i$. $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1610$ and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.2-1.7(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.43\left(\mathrm{~d}, J 6,6 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.8-2.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 5.58$ ($\mathrm{sep}, J 6,1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 6.17(\mathrm{br}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $7.1-7.3(\mathrm{~m}, 5 \mathrm{H}$, ArH).

N -Benzyl-N-(cyclopent-1-enoyl)thiobenzamide
1 j. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1675 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3-1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.9-$ $2.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, N-\mathrm{CH}_{2}\right), 6.05(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and $7.1-7.4(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -(Cyclopent-1-enoyl) thiobenzanilide $\mathbf{1 k} . v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1675 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.2-2.4\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 6.15(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and $7.0-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -(Cyclohex-1-enoyl)- N -methylthiobenzamide
11. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1675 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.1-1.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right)$, $1.6-2.1\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 6.12(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and $7.1-7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.

N -(Cyclohex-1-enoyl)- N -isopropylthiobenzamide 1 m . $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.7-2.1\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \times 4\right)$ $1.47\left(\mathrm{~d}, J 7,6 \mathrm{H}, \mathrm{CMe}_{2}\right), 5.65(\operatorname{sep}, J 7,1 \mathrm{H}, N-\mathrm{CH}), 6.3(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and 7.2-7.4 (m, 5 H, ArH).

N -Benzyl- N -(cyclohex-1-enoyl)thiobenzamide $1 \mathbf{n}$. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1675 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.0-1.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right)$, $1.6-2.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 5.38\left(\mathrm{~s}, 2 \mathrm{H}, N-\mathrm{CH}_{2}\right), 5.93(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH})$ and $7.0-7.4(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -(Cyclohex-1-enoyl)thiobenzanilide 10. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1675; $\delta\left(\mathrm{CDCl}_{3}\right) 0.8-2.0\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 6.2(\mathrm{br}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $7.0-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -Acryloyl- N -isopropylthiobenzamide 1p. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1610 and $1685 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.51\left(\mathrm{~d}, J 7,6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 5.1-5.7$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}+\mathrm{CH}=\mathrm{C}), 5.8-6.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.0-$ 7.6 (m, $5 \mathrm{H}, \mathrm{ArH}$).

N -Acryloyl- N -benzylthiobenzamide 1q. $\quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1615 and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 5.0-5.2(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 5.40(\mathrm{~s}, 2 \mathrm{H}$, $\left.N-\mathrm{CH}_{2}\right), 5.7-6.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $6.9-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

N -Acryloylthiobenzanilide 1r. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1615$ and $1690 ; \delta\left(\mathrm{CDCl}_{3}\right) 5.3-5.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.0-6.3(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$ and $6.8-7.7(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.
N -Crotonoyl-N-isopropylthiobenzamide $1 \mathrm{~s} . \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1630$ and $1685 ; \delta\left(\mathrm{CDCl}_{3}\right) \quad 1.43 \quad(\mathrm{~d}, J 7,6 \quad \mathrm{H}$, CMe_{2}), 1.50 (dd, J 6 and $2,3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}$), $5.47(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}+\mathrm{CH}=\mathrm{C}), 6.45(\mathrm{dq}, J 15$ and $6,1 \mathrm{H}, \mathrm{C}=\mathrm{CHMe})$ and $7.1-$ 7.6 (m, $5 \mathrm{H}, \mathrm{ArH}$).

N -Crotonoylthiobenzanilide $\mathbf{1 t}$. M.p. $\quad 116-117^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635$ and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.50(\mathrm{dd}, J 6$ and 2 , $3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 5.4(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.00(\mathrm{dq}, J 15$ and $6,1 \mathrm{H}$, $\mathrm{C}=\mathrm{CHMe}$) and $7.1-7.6(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$ (Found: C, 72.55 ; H, 5.4; $\mathrm{N}, 4.95 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 72.55 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.97 \%$).

N -Cinnamoyl- N -isopropylthiobenzamide $1 \mathbf{u} . \quad v_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 1610$ and $1690 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 1.48(\mathrm{~d}, J \quad 7,6$ $\mathrm{H}, \mathrm{CMe}_{2}$), 5.55 (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}$), 6.50 (d, J 15, 1 H , $\mathrm{CH}=\mathrm{CPh})$ and $7.0-7.6(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}=\mathrm{CHPh}+\mathrm{ArH})$.

N -Cinnamoyl- N -phenylthiobenzamide 1v. M.p. $106-108^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1605$ and $1700 ; \delta\left(\mathrm{CDCl}_{3}\right) 6.57(\mathrm{~d}, J 15,1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CPh})$ and $7.0-8.0(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}=\mathrm{CHPh}+\mathrm{ArH})$ (Found: C , $76.85 ; \mathrm{H}, 4.95 ; \mathrm{H}, 4.0 . \mathrm{C}_{22} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 76.93 ; \mathrm{H}, 4.98$; N, 4.07%).

General Procedure for the Photochemical Reaction of $\mathrm{N}-(\alpha, \beta-$ Unsaturated carbonyl)thioamides 1a-v.-A benzene solution of the monothioimide was irradiated with a $1000-\mathrm{W}$ high pressure mercury lamp under argon at room temperature until the starting material had disappeared. After evaporation of the solvent, the residual mixture was subjected to chromatography on silica gel, using benzene-ethyl acetate as eluent. The crystalline products were recrystallized from chloroformhexane.

2,4-Dimethyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3one 2a. M.p. $103-104.5^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-3} 1745 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.02(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 2.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 3.07$ and $3.27(\mathrm{ABq}, J 10$, $\left.2 \mathrm{H}, 5-\mathrm{CH}_{2}\right)$ and $7.1-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.7(\mathrm{q}, 4-$ Me), 25.5 ($\mathrm{q}, \mathrm{N}-\mathrm{Me}$), 29.2 (t, 5-C), 68.6 ($\mathrm{s}, 4-\mathrm{C}$), 76.5 ($\mathrm{s}, 1-\mathrm{C}$), 128.3 (d, Ar), 128.8 (d, Ar), 128.8 (d, Ar), 134.2 (s, Ar) and 171.5 (s, C=O) (Found: C, 65.45; H, 5.95; N, 6.35. $\mathrm{C}_{12} \mathrm{H}_{13}$ NOS requires C, 65.72 ; H, 5.97 ; N, 6.38%).

2-Ethyl-4-methyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3one 2b. B.p. $65-70^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1745$; $\delta\left(\mathrm{CDCl}_{3}\right) 1.02(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.24(\mathrm{t}, J 7,3 \mathrm{H}, \mathrm{N}-\mathrm{Et}), 3.03$ and $3.30\left(\mathrm{ABq}, J 10,2 \mathrm{H}, 5-\mathrm{CH}_{2}\right)$ and $3.33(\mathrm{q}, J 7,2 \mathrm{H}, \mathrm{NEt})$ and $7.1-$ $7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.9(\mathrm{q}, \mathrm{Et}), 14.7(\mathrm{q}, 4-\mathrm{Me}), 28.9(\mathrm{t}$, $5-\mathrm{C}$), 36.3 (t, Et), 68.0 ($\mathrm{s}, 4-\mathrm{C}$), 75.8 ($\mathrm{s}, 1-\mathrm{C}$), 128.5 (d, Ar), 128.6 (d, Ar), 128.8 (d, Ar), 134.7 (s, Ar) and 171.5 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) (Found: C, 67.2; H, 6.5; N, 5.95. $\mathrm{C}_{13} \mathrm{H}_{15}$ NOS requires C, 66.91; H, 6.48; N, 6.00%).

2-Isopropyl-4-methyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]-
hexan-3-one 2c. M.p. $82-83^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$; $\delta\left(\mathrm{CDCl}_{3}\right) 1.00(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}) 1.33(\mathrm{~d}, J 7,3 \mathrm{H}, \mathrm{CHMe}), 1.35(\mathrm{~d}, J$ $7,3 \mathrm{H}, \mathrm{CHMe}), 2.94$ and $3.34\left(\mathrm{ABq}, J 10,2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.60(\mathrm{sep}$, $J 7,1 \mathrm{H}, \mathrm{NCH})$ and $7.0-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.8(\mathrm{q}, 4-$ $\mathrm{Me}), 20.6\left(\mathrm{q}, \operatorname{Pr}^{\mathrm{i}}\right), 21.1\left(\mathrm{q}, \operatorname{Pr}^{\mathrm{i}}\right), 28.7(\mathrm{t}, 5-\mathrm{C}), 47.0\left(\mathrm{~d}, \operatorname{Pr}^{\mathrm{i}}\right), 67.0(\mathrm{~s}$, 4-C), 75.4 (s, 1-C), 128.5 (d, Ar), 128.6 (d, Ar), 128.6 (d, Ar), 135.5 (s, Ar) and 171.3 (s, $\mathrm{C}=\mathrm{O}$) (Found: $\mathrm{C}, 67.85 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.6$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}$ requires $\mathrm{C}, 67.98 ; \mathrm{H}, 6.92 ; \mathrm{N}, 5.66 \%$).

2-Benzyl-4-methyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-5-one 2d. M.p. $81-82^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.02(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 3.00$ and $3.30\left(\mathrm{ABq}, J 10,2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 4.37(\mathrm{~s}$,
$\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right)$ and $7.0-7.4(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.9(\mathrm{q}, 4-$ Me), 29.2 (t, 5-C), 45.5 ($\mathrm{t}, \mathrm{N}-\mathrm{CH}_{2}$), 68.3 ($\mathrm{s}, 4-\mathrm{C}$), 76.5 ($\mathrm{s}, 1-\mathrm{C}$), 127.7 (d, Ar), 128.4 (d, Ar), 128.5 (d, Ar), 128.6 (d, Ar), 128.7 (d, $\mathrm{Ar}), 129.3$ (d, Ar), 134.2 (s, Ar), $135.0(\mathrm{~s}, \mathrm{Ar})$ and 171.5 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) (Found: C, 72.95; H, 5.8; N, 4.7. $\mathrm{C}_{18} \mathrm{H}_{17}$ NOS requires C, 73.19; H, 5.80; N, 4.74\%).
4-Methyl-1,2-diphenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-one 2e. M.p. $103-104{ }^{\circ} \mathrm{C} ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1750 ; \quad \delta\left(\mathrm{CDCl}_{3}\right)$ $1.08(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 3.16$ and $3.47\left(\mathrm{ABq}, J 10 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right)$ and $6.8-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ; 8\left(\mathrm{CDCl}_{3}\right): 14.9(\mathrm{q}, 4-\mathrm{Me}), 30.3(\mathrm{t}, 5-\mathrm{C})$, 67.3 (s, 4-C), 73.7 (s, 1-C), 118.0 (d, Ar), 124.6 (d, Ar), 128.4 (d, Ar), 128.8 (d, Ar), 128.9 (d, Ar), 129.2 (d, Ar), 134.0 (s, Ar), 136.0 (s, Ar) and 168.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) (Found: C, 72.6; H, 5.5; N, 4.9. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 72.56 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.97 \%$).

2,4,5-Trimethyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3one 2f. This β-lactam was obtained as a mixture of two stereoisomers (the ratio of them determined by NMR spectra was $60: 40$). B.p. $70-75^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-3} 1750$; (major isomer): $\delta\left(\mathrm{CDCl}_{3}\right) 1.02(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.51(\mathrm{~d}, J 7,3 \mathrm{H}, 5-$ $\mathrm{Me}), 2.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 3.74(\mathrm{q}, J 7,1 \mathrm{H}, 5-\mathrm{CH})$ and $7.2-7.6(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.5$ (q, Me), 20.1 (q, Me), 25.7 (q, NMe), 37.3 (d, $5-\mathrm{C}), 72.8\left(\mathrm{~s}, 1\right.$ or $\left.4-\mathrm{CH}_{2}\right), 74.9\left(\mathrm{~s}, 1\right.$ or $\left.4-\mathrm{CH}_{2}\right), 128.2(\mathrm{~d}$, $\mathrm{Ph}), 128.3$ (d, Ph), 128.6 (d, Ph), $134.0(\mathrm{~s}, \mathrm{Ph})$ and 172.7 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$); minor isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 0.97(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.48(\mathrm{~d}, J 7,3 \mathrm{H}, 5-$ $\mathrm{Me}), 2.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 3.81(\mathrm{q}, J 7,1 \mathrm{H}, 5-\mathrm{CH})$ and $7.2-7.4$ (m, $5 \mathrm{H}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.2(\mathrm{q}, \mathrm{Me}), 20.3(\mathrm{q}, \mathrm{Me}), 25.0(\mathrm{q}, \mathrm{N}-\mathrm{Me})$, 40.9 (d, 5-C), 71.2 (s, 1- or 4-C), 71.9 (s, 1- or 4-C), 134.5 (s, Ph) and 169.7 (s, $\mathrm{C}=\mathrm{O}$) (Found: $\mathrm{C}, 67.2 ; \mathrm{H}, 6.5 ; \mathrm{N}, 6.0 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 66.91 ; \mathrm{H}, 6.48 ; \mathrm{N}, 6.00 \%$).
2-Isopropyl-4,5-dimethyl-1-phenyl-6-thia-2-azabicyclo-[2.2.0]hexan-3-one $\mathbf{2 g}$. This β-lactam was obtained as a mixture of two stereoisomers (the ratio of them determined from NMR spectra was $60: 40$). M.p. $88-93^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750$; major isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 1.03(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.39(\mathrm{~d}, J 7,6 \mathrm{H}$, CMe_{2}), 1.59 (d, $\left.J 7,3 \mathrm{H}, 5-\mathrm{Me}\right), 3.64(\mathrm{q}, J 7,1 \mathrm{H}, 5-\mathrm{CH}), 3.72$ (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}$) and $7.3-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.4$ (q, Me), 20.5 (q, Me), 20.9 (q, Me), 21.3 (q, Me), 40.4 (d, 5-C), 46.9 (d, N-C) 70.2 (s, 1 or $4-\mathrm{C}), 71.6$ (s, 1 or $4-\mathrm{C}$), 128.4 (d, Ph), $128.5(\mathrm{~d}, \mathrm{Ph}), 128.6(\mathrm{~d}, \mathrm{Ph}), 135.3(\mathrm{~s}, \mathrm{Ph})$ and $169.6(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; minor isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 0.98(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.36(\mathrm{~d}, J 7,6 \mathrm{H}$, CMe_{2}), 1.48 (d, $J 7,3 \mathrm{H}, 5-\mathrm{Me}$), $3.69(\mathrm{q}, J 7,1 \mathrm{H}, 5-\mathrm{CH}), 3.90$ (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}$) and 7.3-7.4 (m, $5 \mathrm{H}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.5$ (q, Me), 19.9 (q, Me), 20.53 (q, Me), 21.0 (q, Me), 36.8 (d, 5-C), 47.0 (d, NC), 69.6 (s, 1 or 4-C), 73.8 (s, 1 or 4-C), 128.3 (s, Ph), $128.5(\mathrm{~d}, \mathrm{Ph}), 135.8(\mathrm{~s}, \mathrm{Ph})$ and $172.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}$) (Found: C, 69.0: $\mathrm{H}, 7.35 ; \mathrm{N}, 5.35 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 68.92 ; \mathrm{H}, 7.32 ; \mathrm{N}$, 5.35%).
(2-Methylbut-2-enoylamino)thioisobutyrophenone 3g. $\quad Z$ isomer: yield 12%; M.p. $162-163{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400$, 3300 and $1660 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.73(\mathrm{~d}, J 7,3 \mathrm{H}, \mathrm{C}=\mathrm{CHMe}), 1.75$ (s, $3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2}\right), 5.57(\mathrm{dq}, J 7$ and $1.3,1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 15.0 (q, Me), 20.6 (q, Me), 20.6 (q, Me), 28.4 (q, Me), 68.2 (s, N-C), 126.0 (d), 127.4 (d), 127.7 (d), 129.1 (d), 133.0 (s, Ph), 148.6 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 168.6 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ and 255.9 ($\mathrm{s}, \mathrm{C}=\mathrm{S}$) (Found: C, 68.95; H, 7.35; N, 5.3. $\mathrm{C}_{15} \mathrm{H}_{19}$ NOS requires C, 68.92; H, 7.32; N, 5.35%).
E isomer: yield $5 \% ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400,3300$ and $1660 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.73(\mathrm{dq}, J 7$ and $1.1,3 \mathrm{H}, \mathrm{C}=\mathrm{CHMe}), 1.79(\mathrm{~d}$ $J 1.1,3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 1.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2}\right), 6.37(\mathrm{qd} J 7$ and $1.1,1$ $\mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.3-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(\mathrm{q}, \mathrm{Me}), 20.9(\mathrm{q}, \mathrm{Me}), 27.8(\mathrm{q}, \mathrm{Me}), 68.1(\mathrm{~s}, \mathrm{~N}-\mathrm{C})$, 125.8 (d), 127.4 (d), 128.3 (d), 129.0 (d), 132.5 (s, Ph), 148.5 (s, $\mathrm{C}=\mathrm{C}), 168.1(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ and $256.3(\mathrm{~s}, \mathrm{C}=\mathrm{S})$.

4,5-Dimethyl-1,2-diphenyl-6-thia-2-azabicyclo[2.2.0]hexan-3one 2 h . This β-lactam was obtained as a mixture of two stereoisomers (the ratio of them determined from the NMR spectra was $70: 30$). M.p. $103-108{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1755$;
major isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 1.07(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.53(\mathrm{~d}, J 7,3 \mathrm{H}, 5-$ $\mathrm{Me}), 3.89(\mathrm{q}, J 7,1 \mathrm{H}, 5-\mathrm{CH})$ and $7.0-7.7(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$; $\delta\left(\mathrm{CDCl}_{3}\right) 9.5(\mathrm{q}, \mathrm{Me}), 14.4(\mathrm{q}, \mathrm{Me}), 20.5(\mathrm{q}, \mathrm{Me}), 42.3(\mathrm{~d}, 5-\mathrm{C})$, 70.2 (s, 1 or $4-\mathrm{C}$), 70.8 (s, 1 or $4-\mathrm{C}$), 118.0 (d, Ph), 124.4 (d, Ph), 128.3 (d, Ph), 128.5 (d, Ph), 128.8 (d, Ph), 129.1 (d, Ph), 133.9 (s, $\mathrm{Ph}), 135.8(\mathrm{~s}, \mathrm{Ph})$ and $166.7(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; minor isomer: $\delta\left(\mathrm{CDCl}_{3}\right)$ 1.02 (s, $3 \mathrm{H}, 4-\mathrm{Me}$), 1.56 (d, $J 7,3 \mathrm{H}, 5-\mathrm{Me}$), 3.93 (q, $J 7,1 \mathrm{H}, 5-$ $\mathrm{CH})$ and $7.0-7.4(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.6(\mathrm{q}, \mathrm{Me}), 20.2(\mathrm{q}$, $\mathrm{Me}), 38.4$ (d, $5-\mathrm{C}$), 70.0 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 72.2 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 134.4 (s , Ph), 136.3 (s, Ph) and 169.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) (Found: C, 73.3; H, 5.85; N, 4.7. $\mathrm{C}_{18} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 73.19 ; \mathrm{H}, 5.80 ; \mathrm{N}, 4.74 \%$).

3-Isopropyl-4-phenyl-5-thia-3-azabicyclo[4.3.0.0 $0^{1,4}$]nonan-2one 2i. M.p. $115-116^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740 ;{ }^{1} \mathrm{H} \delta\left(\mathrm{CDCl}_{3}\right)$ $1.3-2.3\left(\mathrm{~m}, 6 \mathrm{H}, 7,8\right.$ and $9-\mathrm{CH}_{2}$), 1.31 (d, $J 7,3 \mathrm{H}, \mathrm{Me}$), 1.33 (d, J $7,3 \mathrm{H}, \mathrm{Me}$), 3.70 (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}$), 4.05 (br, $1 \mathrm{H}, 6-\mathrm{CH}$), $7.1-$ $7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.4\left(\mathrm{q}, \operatorname{Pr}^{\mathrm{i}}\right), 21.2\left(\mathrm{q}, \operatorname{Pr}^{\mathrm{i}}\right), 24.6(\mathrm{t}, 7-$, 8- or 9-C), 26.8 (t, 7-, 8- or 9-C), 33.9 (7-, 8-or 9-C), 43.0 (d, 6-C), 47.0 (d, $\operatorname{Pr}^{\mathrm{i}}$), 71.8 (s, 1 or $4-\mathrm{C}$), 77.7 (1 or $4-\mathrm{C}$), 128.5 (d, Ar), 128.5 (d, Ar), 128.6 (d, Ar), 135.5 (s, Ar) and 167.0 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) (Found: C, $70.35 ; \mathrm{H}, 7.05 ; \mathrm{N}, 5.0 . \mathrm{C}_{16} \mathrm{H}_{19}$ NOS requires C, 70.29; H, 7.00; N, 5.12%).
3-Benzyl-4-phenyl-5-thia-3-azabicyclo[4.3.0.0 ${ }^{1,4}$]nonan-2-one 2j. M.p. $99-100{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.5-2.2$ (m, $6 \mathrm{H}, 7-, 8$ and $9-\mathrm{CH}_{2}$), $3.93(\mathrm{t}, J 7,1 \mathrm{H}, 6-\mathrm{CH}), 4.30(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right)$ and 6.9-7.1 (m, $\left.10 \mathrm{H}, \mathrm{ArH}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.7\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $26.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.5(\mathrm{~d}, 6-\mathrm{C}), 45.5\left(\mathrm{t}, \mathrm{N}-\mathrm{CH}_{2}\right), 73.0(\mathrm{~s}$, 1 or $4-\mathrm{C}$), 79.0 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 127.6 (d, Ph), 128.4 (d, Ph), 128.5 (d, Ph), 128.7 (d, Ph), 129.3 (d, Ph), 134.2 (s, Ph), 134.9 (s, Ph) and 169.8 (s, C=O) (Found: C, $74.55 ; \mathrm{H}, 6.0$; N, 4.3. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 74.37 ; \mathrm{H}, 5.95 ; \mathrm{N}, 4.35 \%$).
3,4-Diphenyl-5-thia-3-azabicyclo[4.3.0.0 ${ }^{1,4}$]nonan-2-one $\mathbf{2 k}$. M.p. $160-161^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1745 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3-2.3(\mathrm{~m}$, $6 \mathrm{H}, 7-, 8$ and $\left.9-\mathrm{CH}_{2}\right), 4.1-4.3(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH})$ and $7.0-7.7(\mathrm{~m}, 10$ $\mathrm{H}, \mathrm{ArH}) ; \delta\left(\mathrm{CDCl}_{3}\right) 25.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 26.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.3\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 45.2 (d, 6-C), 70.9 (s, 1- or 4-C), 78.1 (s, 1- or 4-C), 117.7 (d, Ph), 124.4 (d, Ph), 128.5 (d, Ph), 128.8 (d, Ph), 128.9 (d, Ph), 129.1 (d, Ph), 134.0 (s, Ph), 136.3 (s, Ph) and 167.0 (s, C=O) (Found: C, $74.25 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.5 . \mathrm{C}_{19} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 74.23 ; \mathrm{H}, 5.57 ; \mathrm{N}$, 4.55%).
3-Methyl-4-phenyl-5-thia-3-azabicyclo[4.4.0.0 ${ }^{1.4}$]decan-2-one 21. M.p. $92-93{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1740 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3-1.8$ (m, $8 \mathrm{H}, 7,8,9$ and $10-\mathrm{CH}_{2}$), $2.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 3.64(\mathrm{t}, \mathrm{J} 7,1$ $\mathrm{H}, 6-\mathrm{CH})$ and $7.2-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.6\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $20.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 21.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.5(\mathrm{q}, \mathrm{N}-\mathrm{Me}), 33.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.2(\mathrm{~d}$, $6-\mathrm{C}), 71.1$ ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 77.2 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 128.4 (d, Ph), 128.7 (d, Ph), 128.8 (d, Ph), 134.2 (s, Ph) and 172.8 (s, $\mathrm{C}=\mathrm{O}$) (Found: C, 69.7; H, 6.65; N, 5.4. $\mathrm{C}_{15} \mathrm{H}_{17}$ NOS requires C, 69.46; H, 6.60; N, 5.40%).
3-Isopropyl-4-phenyl-5-thia-3-azabicyclo[4.4.0.0 ${ }^{1.4}$]decan-2one 2 m . M.p. $94.5-95^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $0.5-2.5\left(\mathrm{~m}, 8 \mathrm{H}, 7,8,9\right.$ and $\left.10-\mathrm{CH}_{2}\right), 1.28(\mathrm{~d}, J 7,3 \mathrm{H}, \mathrm{Me}), 1.37$ (d, $J 7,3 \mathrm{H}, \mathrm{Me}), 3.63$ (sep, $J 7,1 \mathrm{H}, \mathrm{NCH}$), $3.78(\mathrm{t}, J 6,1 \mathrm{H}, 6-$ $\mathrm{CH})$ and $7.1-7.7(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 18.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 19.6(\mathrm{t}$, CH_{2}), 20.6 (q, Me), $20.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 21.2(\mathrm{q}, \mathrm{Me}), 32.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.8$ (d, 6-C), 46.9 (d, N-C), 69.6 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 75.7 ($\mathrm{s}, 1$ or $4-\mathrm{C}$), 128.5 (d, Ph), $128.5(\mathrm{~d}, \mathrm{Ph}), 135.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ and $172.5(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ (Found: C, 71.2; H, 7.45; N, 4.85. $\mathrm{C}_{17} \mathrm{H}_{21}$ NOS requires C, $71.04 ; \mathrm{H}, 7.36$; N, 4.87%).
3-Benzyl-4-phenyl-5-thia-3-azabicyclo[4.4.0.0 ${ }^{1.4}$]decan-2-one 2n. M.p. $89-90^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1745 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.5-2.5$ (m, $8 \mathrm{H}, 7-, 8$-, 9 - and $10-\mathrm{CH}_{2}$), $3.80(\mathrm{t}, J 7,1 \mathrm{H}, 6-\mathrm{CH}), 4.40(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right)$ and $7.0-7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.3(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 20.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 21.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 32.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.2(\mathrm{~d}, 6-\mathrm{C})$, $45.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 70.8(\mathrm{~s}, 1$ or $4-\mathrm{C}), 77.0(\mathrm{~s}, 1$ or $4-\mathrm{C}), 127.5(\mathrm{~d}, \mathrm{Ph})$, 128.4 (d, Ph), 128.7 (d, Ph), 129.3 (d, Ph), 134.4 (s, Ph), 135.0 (s, Ph) and 172.8 (s, $\mathrm{C}=\mathrm{O}$) (Found: $\mathrm{C}, 74.85 ; \mathrm{H}, 6.3$; N, 4.15. $\mathrm{C}_{21} \mathrm{H}_{21}$ NOS requires C, $75.18 ; \mathrm{H}, 6.31$; $\mathrm{N}, 4.17 \%$).
3,4-Diphenyl-5-thia-3-azabicyclo[4.4.0.0 ${ }^{1,4}$]decan-2-one $\mathbf{2 0}$.
M.p. $143-145^{\circ} \mathrm{C} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.5-2.5(\mathrm{~m}$, $8 \mathrm{H}, 7,8,9$ and $\left.10-\mathrm{CH}_{2}\right), 3.85(\mathrm{t}, J 7,1 \mathrm{H}, 6-\mathrm{CH})$ and 6.9-7.6 $(\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 20.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 21.3(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 32.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.2(\mathrm{~d}, 6-\mathrm{C}), 69.6(\mathrm{~s}, 1$ or $4-\mathrm{C}), 74.3(\mathrm{~s}, 1$ or $4-$ C), 118.0 (d, Ph), 124.4 (d, Ph), 128.3 (d, Ph), 128.8 (d, Ph), 128.9 (d, Ph), 129.1 (d, Ph), 134.1 (s, Ph), 136.0 (s, Ph) and 169.6 (s, $\mathrm{C}=\mathrm{O}$) (Found: $\mathrm{C}, 74.7 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.35 . \mathrm{C}_{20} \mathrm{H}_{19}$ NOS requires C , 74.37 ; H, 5.95; N, 4.35%).

2-Isopropyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-one 2p. M.p. $88-93^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.29(\mathrm{~d}, \mathrm{~J}$ $7,3 \mathrm{H}, \mathrm{Me}), 1.30(\mathrm{~d}, J 7,3 \mathrm{H}, \mathrm{Me}), 3.24(\mathrm{dd}, J 3$ and $10,1 \mathrm{H}, 5-$ $\mathrm{CH}), 3.48(\mathrm{dd}, J 9$ and $10,1 \mathrm{H}, 5-\mathrm{CH}), 3.72(\mathrm{sep}, J 7,1 \mathrm{H}, \mathrm{NCH})$, $4.11(\mathrm{dd}, J 3$ and $9,1 \mathrm{H}, 4-\mathrm{CH})$ and $7.0-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.8(\mathrm{q}, \mathrm{Me}), 21.1(\mathrm{q}, \mathrm{Me}), 21.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 46.7(\mathrm{~d}, \mathrm{NC})$, 61.6 (d, 4-C), 70.5 (s, 1-C), 126.4 (d, Ph), 128.3 (s, Ph), 137.4 (s, Ph) and $167.5(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 67.05 ; \mathrm{H}, 6.6 ; \mathrm{N}, 5.8$. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$ requires C, $66.98 ; \mathrm{H}, 6.58 ; \mathrm{N}, 5.85 \%$).
(Acryloylamino) thioisobutyrophenone 3p. M.p. $103-104^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1670$ and $3320 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.82(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{Me} \times 2), 5.43(\mathrm{t}, J 6,1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.07\left(\mathrm{~d}, J 62, \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, $7.1-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$ and $7.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ (Found: C, 66.9; H, 6.5; N, 6.0. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 66.98 ; \mathrm{H}, 6.58 ; \mathrm{N}, 5.85 \%$).

2-Benzyl-1-phenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-one 2q. M.p. $98-102^{\circ} \mathrm{C} / 10^{-2} \mathrm{mmHg} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $3.18(\mathrm{dd}, J 3$ and $10,1 \mathrm{H}, 5-\mathrm{CH}), 3.46(\mathrm{dd}, J 9$ and $10,1 \mathrm{H}$, $5-\mathrm{CH}), 4.13(\mathrm{dd}, J 3$ and $9,1 \mathrm{H}, 4-\mathrm{CH}), 4.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, and $7.0-7.4(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.7(\mathrm{t}, 5-\mathrm{C}), 45.3(\mathrm{t}, \mathrm{NC})$, 62.3 (d, 4-C), 71.7 (s, 1.-C), 126.5 (d, Ph), 126.6 (d, Ph), 127.3 (d, Ph), 128.2 (d, Ph), 128.5 (d, Ph), 128.8 (d, Ph), 134.2 (s, Ph), 136.0 (s, Ph) and $167.8(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 72.75 ; \mathrm{H}, 5.4 ; \mathrm{N}, 4.95$. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOS}$ requires $\mathrm{C}, 72.56 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.97 \%$).

1,2-Diphenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-one 2r. M.p. $119-120^{\circ} \mathrm{C} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1755 ; \delta\left(\mathrm{CDCl}_{3}\right) 3.28$ (dd, $J 3$ and $10,1 \mathrm{H}, 5-\mathrm{CH}), 3.62(\mathrm{dd}, J 9$ and $10,1 \mathrm{H}, 5-\mathrm{CH}), 4.17(\mathrm{dd}, J 3$ and $9,1 \mathrm{H}, 4-\mathrm{CH}$) and $7.1-7.6(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}$) (Found: C, $71.9 ; \mathrm{H}, 5.0$; $\mathrm{N}, 5.25 . \mathrm{C}_{16} \mathrm{H}_{13}$ NOS requires $\mathrm{C}, 71.88 ; \mathrm{H}, 4.90 ; \mathrm{N}, 5.23 \%$).

2-Isopropyl-5-methyl-1-phenyl-6-thia-2-azabicyclo-
[2.2.0]hexan-3-one 2 s . This compound was obtained as a mixture of two stereoisomers. They could not be separated by column chromatography or distillation; b.p. $75-80^{\circ} \mathrm{C} / 10^{-2}$ $\mathrm{mmHg} ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1740 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.29$ and 1.31 (each $\mathrm{d}, J 6.7$, total $6 \mathrm{H}, \mathrm{Me} \times 2$), $1.59(\mathrm{~d}, J 6.7,3 \mathrm{H}, 5-\mathrm{Me}), 3.6-4.2(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{NCH}+4-\mathrm{CH}$ and $5-\mathrm{CH}$) and $7.2-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; major isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 20.2$ (q, Me), 21.1 (q, Me), 25.3 (q, Me), 34.1 (d, 5-C), 47.0 (d, N-C), 68.8 (d, 4-C), 71.1 (s, 1-C), 126.8 (d, Ph), $128.5(\mathrm{~d}, \mathrm{Ph}), 128.6(\mathrm{~d}, \mathrm{Ph}), 138.4(\mathrm{~s}, \mathrm{Ph})$ and $167.9(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; minor isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 20.6(\mathrm{q}, \mathrm{Me}), 21.0(\mathrm{q}, \mathrm{Me}), 21.2(\mathrm{q}, \mathrm{Me})$, 32.7 (d, 5-C), 46.9 (d, N-C), 65.8 (d, 4-C), 68.3 (s, 1-C), 137.8 (s, Ph) and $165.9(\mathrm{~s}, \mathrm{C}=\mathrm{O})$. (Found: $\mathrm{C}, 68.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.5$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}$ requires $\mathrm{C}, 67.98 ; \mathrm{H}, 6.92 ; \mathrm{N}, 5.66 \%$).
(But-2-enoylamino)thioisobutyrophenone 3s. E Isomer: m.p. $125-126^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430,3320,1665$ and 1635 ; $\delta\left(\mathrm{CDCl}_{3}\right) 1.50(\mathrm{dd}, J 6,3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 1.80(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me} \times 2), 5.45$ (m, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.20(\mathrm{dq}, J 15$ and $1,1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$ and $7.1-7.7$ (m, $5 \mathrm{H}, \mathrm{ArH}$) (Found: C, 67.95; H, 6.9; N, 5.65. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}$ requires $\mathrm{C}, 67.98 ; \mathrm{H}, 6.92 ; \mathrm{N}, 5.66 \%$); Z Isomer: m.p. $102-103{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3430,3320,1675$ and $1640 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 1.72(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{Me} \times 2$), $1.90(\mathrm{brd}, J 6,3 \mathrm{H}, \mathrm{C}=\mathrm{CMe}), 5.50(\mathrm{br} \mathrm{d}, J 12,1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}), 5.81(\mathrm{dq}, J 12$ and $6,1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$ and $7.1-7.4(\mathrm{~m}, 5 \mathrm{H}$, ArH) (Found: C, 67.85; H, 6.9; N, 5.65. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}$ requires C , 67.98; H, 6.92; N, 5.66\%).

5-Methyl-1,2-diphenyl-6-thia-2-azabicyclo[2.2.0]hexan-3-one $\mathbf{2 t}$. This compound was obtained as a mixture of two stereoisomers (70:30). They could not be separated by column chromatography or distillation; b.p. $95-100^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750$; major isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 1.73(\mathrm{~d}, J 6.7$,
$3 \mathrm{H}, 5-\mathrm{Me}), 3.8-4.0\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right)$ and $7.0-7.7(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.4$ (q, Me), 35.4 (d, 5-C), 66.6 (d, 4-C), 69.3 (d, 1-C), 117.8 (d, Ph), 127.1 (d, Ph), 127.2 (d, Ph), 128.8 (d, Ph), 128.9 (d, Ph), 129.1 (d, Ph), $136.3(\mathrm{~s}, \mathrm{Ph}), 136.9(\mathrm{~s}, \mathrm{Ph})$ and 164.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$); minor isomer: $\delta\left(\mathrm{CDCl}_{3}\right) 1.60(\mathrm{~d}, J 6.7(3 \mathrm{H}, 5-\mathrm{Me})$, 4.1-4.5 (m, 2 H, 4-CH and 5-CH) and 7.0-7.7 (m, $10 \mathrm{H}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 21.1(\mathrm{q}, \mathrm{Me}), 34.1$ (d, 5-C), $65.8(\mathrm{~d}, 4-\mathrm{C}), 67.6(\mathrm{~s}, 1-\mathrm{C})$, $135.9(\mathrm{~s}, \mathrm{Ph}), 136.4(\mathrm{~s}, \mathrm{Ph})$ and $163.4(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 72.75$; $\mathrm{H}, 5.45$; N, 4.95. $\mathrm{C}_{17} \mathrm{H}_{15}$ NOS requires $\mathrm{C}, 72.56 ; \mathrm{H}, 5.37 ; \mathrm{N}$, 4.97%).
(Cinnamoylamino) thioisobutyrophenone $\mathbf{3 u}$. trans Isomer. m.p. $102-103{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430,3310,1665$ and 1625 ; $\delta\left(\mathrm{CDCl}_{3}\right) 6.87(\mathrm{~d}, J 15,1 \mathrm{H}, \mathrm{CH}=\mathrm{CPh}), 7.0-7.5(\mathrm{~m}, 11 \mathrm{H}$, $\mathrm{C}=\mathrm{CHPh}+\mathrm{ArH}$) and 7.8 (br, $1 \mathrm{H}, \mathrm{NH}$) (Found: $\mathrm{C}, 73.9$; H , $6.25 ; \mathrm{N}, 4.55 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 73.75 ; \mathrm{H}, 6.18 ; \mathrm{N}, 4.52 \%$).

Sensitisation and Quenching of N -Benzylmethacryloylthiobenzamide 1d.-Five Pyrex tubes were irradiated at 365 nm with a $500-\mathrm{W}$ high pressure mercury lamp in a merry-go-round apparatus. Each includes starting material $\mathbf{1 d}\left(0.02 \mathrm{~mol} \mathrm{dm}^{-3}\right)$: 1d and Michler's ketone: 1d and thioxantone; 1d and stilbene; and $1 \mathbf{e}$ and ferrocene. After removal of the solvent, the degree of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The 365 nm line was isolated by using a Uranil glass filter. Concentration of sensitisers were adjusted so that 5% or less of the incident light was absorbed by 1d (in sensitisation), or sensitisers (in quenching). Sensitisation and quenching experiment of $\mathbf{1 e}$ gave similar results to those of $\mathbf{1 d}$.

Quantum Yield Determination for the Formation of the β Lactam 2d.-Benzophenone-benzhydrol actinometry was used for the quantum yield determination. Samples $\left(0.02 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in benzene) in Pyrex tubes were degassed to $c a \cdot 10^{-3} \mathrm{mmHg}$ in fourthaw cycles and sealed. These samples were irradiated at 365 nm in a merry-go-round apparatus. Photolyses were carried out to $20-25 \%$ conversion. The extent of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

References

1 (a) C. Fombert, J. L. Fourrey, P. Jouin and J. Moron, Tetrahedron Lett., 1974, 3007; (b) C. Marazano, J. L. Fourrey and B. C. Das, J. Chem. Soc., Chem. Commun., 1977, 742; (c) P. de Mayo, L. K. Sydnes and G. Wenska, J. Org. Chem., 1980, 45, 1549; (d) T. Nishio and Y. Omote, Synthesis, 1986, 54.
2 (a) M. Machida, K. Oda and Y. Kanaoka, Chem. Pharm. Bull., 1985, 33, 3352; (b) M. Machida, K. Oda, E. Yoshida and Y. Kanaoka, J. Org. Chem., 1985, 50, 1681; (c) J. D. Coyle, P. A. Rapley, J. Kamphuis and H. J. T. Bos, J. Chem. Soc., Perkin Trans. 1, 1985, 1957; (d) K. Oda, M. Machida, K. Aoe, Y. Nishibata, Y. Sato and Y. Kanaoka, Chem. Pharm. Bull., 1986, 34, 1411 and 4414; (e) K. Oda, M. Machida and Y. Kanaoka, Heterocycles, 1988, 27, 2417.
3 Most of photochemical syntheses of β-lactams involve hydrogen abstraction, ring contraction and electrocyclisation, see ref. $4 c$.
4 (a) M. Sakamoto, H. Aoyama and Y. Omote, J. Org. Chem., 1984, 49, 396 and 1837; (b) Tetrahedron Lett., 1986, 27, 1335; (c) M. Sakamoto, S. Watanabe, T. Fijita, M. Tohnishi, H. Aoyama and Y. Omote, J. Chem. Soc., Perkin Trans. 1, 1988, 2203; (d) M. Sakamoto, S. Watanabe, T. Fujita and T. Yanase, J. Org. Chem., 1990, 55, 2986.
5 Part of this reaction have been reported in preliminary form, see ref. $4 a$.
6 S. L. Murov, Handbook of Photochemistry, Marcel Dekker, New York, 1973.
7 A transformation of a penicillin derivative to a thiethane-fused β lactam have been reported. However, there have been no general method of synthesising thiethane-fused β-lactams; F. J. DiNinno, J. Am. Chem. Soc., 1978, 100, 3251.

Paper 0/01738H
Received 18 th April 1990
Accepted 11 th October 1990

